Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after
a single dose of METH. GSK461364 These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved PLX-4720 price in the subsecond dopaminergic response to METH. (C) 2012 Elsevier Ltd. All rights reserved.”
“The nuclear envelope (NE) physically
separates nucleoplasm and cytoplasm, contributes to nuclear structural integrity, controls selective bidirectional transport of ions and macromolecular cargo, regulates gene expression, and acts as a mechanotransducer and a platform for signalling. It is noteworthy however that the NE is not simply a smooth-surfaced outer boundary but is interrupted by invaginations that reach deep within the nucleoplasm and could even traverse the nucleus completely. The existence of such www.selleck.cn/products/iwr-1-endo.html a complex branched network of invaginations forming a nucleoplasmic reticulum (NR) provides sites that are capable of carrying out the ‘conventional’ NE functions deep within the nucleus in regions that would otherwise be remote from the nuclear periphery. In this review, we describe the structural features of NR in normal and pathological states and discuss the current understanding of their functional and possible pathological
roles.”
“Event-related potentials were collected as older and younger adults responded to error feedback in an adaptation of the Groton Maze Learning Test, an age-sensitive measure of spatial learning and executive skills expected to maximally involve anterior cingulate cortex (ACC). Older adults made more errors and produced smaller feedback-related negativities (FRNs) than young controls. LORETA source localization revealed that, for young adults, neural activation associated with the FRN was focused in ACC and was stronger to negative feedback. Older adults responded with less intense and less differentiated ACC activation, but FRN amplitudes did relate to error rate for the most difficult mazes. The feedback P3 was sensitive to negative feedback but played no role in the prediction of error for either group.