g S albidoflavus, S globisporus and S coelicolor, identity 99

g. S. albidoflavus, S. globisporus and S. coelicolor, identity 99%). The chromosomal oriC regions of these strains were also PCR-amplified with primers from the conserved dnaA and dnaN genes and all these oriC sequences were identical. As shown in Additional file 2: Figure S2, its 1136-bp non-coding sequence was predicted to contain 25 DnaA binding-boxes (including nine forward and sixteen reverse) of 9 bp ([T/C][T/C][G/A]TCCAC[A/C]), resembling that of typical Streptomyces (e.g. 17 DnaA boxes of 9 bp [TTGTCCACA] for S. lividans) [24]. The genomic

DNA of these strains was digested with SspI and electrophoresed in pulsed-field gel. As shown in Additional file 3: Figure S3, genomic bands of these strains were identical. These results suggested that the 14 strains were identical (designated Streptomyces

sp. Y27). Sequencing and analysis of pWTY27 The unique SacI-treated pWTY27 was cloned in an E. coli plasmid pSP72 for shotgun cloning and sequencing selleck chemical (see Methods). The complete nucleotide sequence of pWTY27 consisted of 14,288 bp with 71.8% GC content, resembling that of a typical Streptomyces genome (e.g. 72.1% for S. coelicolor) [25]. Fifteen open reading frames (ORFs) were predicted by “FramePlot 4.0beta” (Additional file 4: Figure S4); seven of them resembled genes of characterized function, while eight were hypothetical or unknown genes. These ORFs were grouped into two large presumed transcriptional units (pWTY27.5–4c, pWTY27.5–14; Additional file 5: Table S1). Interestingly, five ORFs of pWTY27.2c resembled these of of pSG2 of S. ghanaensis (DNA polymerase, SpdB2, TraA, TraB and resolvase). pWTY27.9 containing a domain (from https://www.selleckchem.com/products/cx-4945-silmitasertib.html 246 to 464 amino acids) for DNA segregation ATPase FtsK/SpoIIIE resembled a major conjugation Tra protein of Streptomyces plasmid pJV1 (NP_044357). Like other Streptomyces plasmids (e.g. SLP1 and SCP2), pWTY27 encodes genes showing similarity to transcriptional regulator kor (kill-override), spd (plasmid spreading) and Dolichyl-phosphate-mannose-protein mannosyltransferase int (integrase) genes. Unexpectedly, pWTY27.11 resembled a chromosomally

encoded phage head capsid in Nocardia farcinica IFM 10152, suggesting the occurrence of a horizontal transfer event between plasmid and phage. Characterization of replication of pWTY27 To identify a locus for plasmid replication, various pWTY27 fragments were sub-cloned into an E. coli plasmid pFX144 containing a Streptomyces apramycin resistance marker and were introduced by transformation into S. lividans ZX7. As shown in Figure 1a, plasmids (e.g. pWT24, 26, 147 and 219) containing pWTY27.1c, 2c and a 300-bp non-coding sequence (321–620 bp, ncs) could replicate in S. lividans ZX7, but deletion of pWTY27.2c (i.e. pWT217 and pWT33) or pWTY27.1c (pWT34) or the ncs (pWT222) abolished propagation in S. lividans ZX7. Adding the 300-bp ncs (pWT223), but not a 149-bp ncs (382–530, pWT241), to pWT222 restored its replication activity. Co-transcription of pWTY27.

Comments are closed.