In the cell, scaRNAs are associated with the WD-repeat protein WDR79. We used selleck screening library coimmunoprecipitation with WDR79 to recover seven new scaRNAs from Drosophila cell lysates. We demonstrated concentration of these new scaRNAs in the CB by in situ hybridization, and we verified experimentally that they can modify their putative target RNAs. Surprisingly, one of the new scaRNAs targets U6 snRNA, whose modification is generally assumed to occur in the nucleolus, not in the CB. Two other scaRNAs have dual guide functions,
one for an snRNA and one for 28S rRNA. Again, the modification of 28S rRNA is assumed to take place in the nucleolus. These findings suggest that canonical scaRNAs may have functions in addition to their established role in modifying U1, U2, U4, and U5 snRNAs. We discuss the likelihood that processing by scaRNAs is not limited to the CB.”
“During synthesis of yeast ribosome, a large complex, called the 90S pre-ribosome or the small subunit processome, www.selleckchem.com/products/pf-477736.html is assembled on the nascent precursor rRNA and mediates early processing of 18S rRNA. The Utp23 protein and snR30 H/ACA snoRNA are two conserved components of 90S pre-ribosomes. Utp23 contains a degenerate PIN nuclease
domain followed by a long C-terminal tail and associates specifically with snR30. Here, we report the crystal structure of the Utp23 PIN domain at 2.5-angstrom resolution. The structure reveals a conserved core fold of PIN domain with degenerate active site residues, a unique CCHC Zn-finger motif, and two terminal
extension elements. Functional sites of Utp23 have been examined with conservation analysis, mutagenesis, and in vivo and in vitro assays. Mutations in each of three cysteine ligands of zinc, although not the histidine ligand, were lethal or strongly inhibitory to yeast growth, indicating that the Zn-finger motif is required for Utp23 structure or function. The N-terminal helix extension harbors many highly conserved basic residues that mostly are critical for growth Trichostatin A and in vitro RNA-binding activity of Utp23. Deletion of the C-terminal tail, which contains a short functionally important sequence motif, disrupted the interaction of Utp23 with snR30 and perturbed the pre-ribosomal association of Utp23. Our data establish a structural framework for dissecting Utp23 function in the assembly and dynamics of 90S pre-ribosomes.”
“The hepatitis C viral RNA genome forms a complex with liver-specific microRNA (miR-122) at the extreme 5′ end of the viral RNA. This complex is essential to stabilize the viral RNA in infected cultured cells and in the liver of humans. The abundances of primary and precursor forms of miR-122, but not the abundance of mature miR-122, are regulated in a circadian rhythm in the liver of animals, suggesting a possible independent function of precursor molecules of miR-122 in regulating viral gene expression. Modified precursor molecules of miR-122 were synthesized that were refractory to cleavage by Dicer.