Reginster JY, Adami

S, Lakatos P, Greenwald M, Stepan JJ,

Reginster JY, Adami

S, Lakatos P, Greenwald M, Stepan JJ, Silverman SL, Christiansen C, Rowell L, Mairon N, Bonvoisin B, Drezner MK, Emkey R, Felsenberg D, Cooper C, Delmas PD, Miller PD (2006) Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann Rheum Dis 65:654–661PubMedCrossRef 16. Shiraki M, Kushida K, Fukunaga M, Kishimoto H, Kaneda K, Minaguchi H, Inoue T, Tomita A, Nagata Y, Nakashima M, Orimo H (1998) A placebo-controlled, single-blind study to determine the appropriate alendronate dosage in postmenopausal Japanese patients with selleck osteoporosis. The Alendronate Research Group. Endocr J 45:191–201PubMedCrossRef 17. Tucci JR, Tonino RP, Emkey RD, Peverly CA, Kher U, Santora AC 2nd (1996) Effect of 3 years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 101:488–501PubMedCrossRef 18. Zegels B, Eastell R, Russell RG, Ethgen D, Roumagnac I, Collette J, Reginster JY (2001) Effect of high doses of oral risedronate (20 mg/day) on serum parathyroid hormone levels and urinary collagen cross-link excretion in postmenopausal women with spinal osteoporosis. Bone 28:108–112PubMedCrossRef 19. Cosman F, Borges JL, Curiel MD (2007) Clinical evaluation of novel bisphosphonate dosing regimens in osteoporosis: the role of comparative studies and implications

for future studies. Clin Ther 29:1116–1127PubMedCrossRef”
“Introduction Demeclocycline this website Osteoporosis is a see more critical public health problem due to its association with bone fragility and susceptibility to fracture [1]. According to the U.S. National

Institutes of Health, osteoporosis is defined as a systemic skeletal disorder characterized by compromised bone strength [2]. Bone strength is not only determined by measures of bone density, such as mass and mineral density, but also by bone quality, including microarchitecture, turnover, accumulation of microdamage, mineralization, and quality of collagens [2, 3]. Interestingly, patients with type 2 diabetes have an increased risk of fracture despite normal or high bone mineral density (BMD) compared with non-diabetic controls, suggesting poorer bone quality in diabetic patients [4]. Accumulation of advanced glycation end-products (AGEs), which are often found in diabetic patients, in bone collagen has been proposed as a factor responsible for reducing bone strength with aging [5], diabetes [6, 7], and osteoporosis [8–10]. AGEs are a diverse class of compounds resulting from non-enzymatic reactions between glucose and proteins. A common consequence of AGE formation is covalent cross-linking, mostly to proteins including collagen. Accumulation of AGEs in bone collagen decreases the mechanical properties of bone collagen [11, 12]. In rats, an increase of AGE content in bone decreases the mechanical properties of bone despite normal BMD [6].

Comments are closed.