Serum resistant Borrelia acquire CFH and/or FHL-1 by direct inter

Serum selleck chemicals llc resistant Borrelia acquire CFH and/or FHL-1 by direct interaction with outer surface proteins designated CRASPs (Complement Regulator-Acquiring Surface Proteins) [16]. Previously, five different CRASPs have been described for B. burgdorferi ss and B. afzelii. The CFH and FHL-1 binding CspA protein is (also designated

CRASP-1) encoded by cspA, a gene located on the lp54 plasmid. Although the lp54 plasmid of B. burgdorferi and B. afzelii carries multiple genes encoding a number of paralogous proteins, also called the gbb54 orthologous family, only the CspA is capable of binding human CFH and FHL-1 [17]. CspA is upregulated by spirochetes during the tick-mammalian transmission stage and down regulated during persistent infection [18, 19]. CspZ is a distinct protein encoded by the cspZ gene located on plasmid lp28-3 and is expressed at higher levels during the mammalian

infection selleck products than in bacteria residing in ticks or during laboratory cultivation [18]. Anti-CspZ antibodies can be detected as early as two weeks post infection in mice infected by ticks [20]. CspZ has been shown to bind other yet unknown proteins and therefore can have multiple functions [19–22]. The CFH-binding CRASP proteins BbCRASP-3, -4, and -5 belong to the OspE-related PF-01367338 purchase proteins (Erp) paralogous family and their respective genes are located on diverse cp32 prophage DNA molecules [23]. Erp proteins are expressed in tissues in the host during disseminated mammalian infection. Erp proteins have also been shown to be able IKBKE to bind to factor H related proteins-1 (CFHR1) and plasminogen [24–29]. In contrast to B. burgdorferi ss and B. afzelii most B. garinii strains are unable to bind human complement regulators [30]. Two CspA orthologs from B. garinii ST6 ZQ1, named BgCRASP-1α and BgCRASP-1β, have been shown to bind weakly to FHL-1 but not to human CFH [31]. Little data is published on complement evasion strategies of human serum resistant strains of the B. garinii ST4 strains. The gbb54 orthologous family of B. garinii

ST4 has not been studied before. It has been elaborately shown which gbb54 ortholog from B. burgdorferi ss and B. afzelii can bind human CFH, but little is known about the function of the other orthologs. It has been described previously that CspA derived from B. burgdorferi ss interacts with human CFH; however none of the closely related protein of the gbb54 family, interacts with human CFH [32]. Wallich et al characterised all gbb54 orthologous members of a B. afzelii and B. garinii strain wherein none of the remaining orthologs could bind human CFH/FHL-1 [17, 31]. We hypothesise that orthologs from the gbb54 family have the ability to bind to CFH from several animal origins. The aim of the present study was to investigate the mechanism for complement evasion by B.

Comments are closed.