“Several antipsychotic drugs (APDs) have high propensity t


“Several antipsychotic drugs (APDs) have high propensity to induce weight gain and dyslipidemia in patients, with clozapine and olanzapine as the most potent drugs. These lipid-related effects have been attributed to drug-mediated blockade or antagonism of histamine H1 and serotonin 5-HT2 receptors as well as activation of hypothalamic AMP-activated protein kinase. We recently showed that APDs activate lipid biosynthesis in cultured liver cells through

stimulation of the sterol regulatory element-binding protein (SREBP) transcription Flavopiridol price factors.

The objective of the study was to search for clozapine-related lipogenic effects in peripheral tissues in vivo using rat liver as target selleckchem organ.

Adult female Sprague-Dawley rats

were administered single intraperitoneal injections of clozapine (25 and 50 mg/kg). Hepatic lipid levels were measured during a 48-h time course. Real-time quantitative PCR was used to analyze expression of genes involved in lipid biosynthesis, oxidation, efflux, and lipolysis.

We identified an initial up-regulation of central lipogenic SREBP target genes, followed by a marked and sustained down-regulation. We also observed a sequential transcriptional response for fatty acid beta-oxidation and cholesterol efflux genes, normally controlled by the peroxisome proliferator activated receptor alpha and liver X receptor alpha transcription factors, and also down-regulation of genes encoding major lipases. The transcriptional responses SB-3CT were associated with a significant accumulation of triacylglycerol, phospholipids, and cholesterol in the liver.

These results demonstrate that acute clozapine exposure affects SREBP-regulated lipid biosynthesis as well as other lipid homeostasis

pathways. We suggest that such drug-induced effects on lipid metabolism in peripheral tissues are relevant for the metabolic adverse effects associated with clozapine and possibly other APDs.”
“Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs-E2-binding sites (E2BS)-in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functionality of E2BSs in the human genome. Our computational analysis indicates that most E2BSs in the human genome are found in repetitive DNA regions and have G/C-rich spacer sequences. Using a chromatin immunoprecipitation approach, we show that human papillomavirus type 11 (HPV11) E2 interacts with a subset of cellular E2BSs located in active chromatin regions.

Comments are closed.