1007/s003390051050CrossRef 32 Terrones M, Hsu WK, Kroto HW, Walt

1007/s003390051050CrossRef 32. Terrones M, Hsu WK, Kroto HW, Walton DR: Nanotubes: a revolution in materials science and electronics. In Fullerenes and Related Structures. Heidelberg: Springer; 1999:189–234.CrossRef 33. Rummeli MH, Schäffel F, Bachmatiuk A, Adebimpe D, Trotter G, Borrnert F, Scott A, Coric E, Sparing M, Rellinghaus B: Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 2010, 4:1146–1152. 10.1021/nn9016108CrossRef 34. Lai C, Guo Q, Wu X-F, Reneker DH, Hou H: Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology 2008, 19:195303. 10.1088/0957-4484/19/19/195303CrossRef

35. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 2010, 39:2184–2202. 10.1039/b912552cCrossRef 36. Dunens OM, MacKenzie KJ, Harris AT: Synthesis of multiwalled carbon nanotubes KU-60019 on fly ash derived catalysts. Environ Sci Tech 2009, 43:7889–7894. 10.1021/es901779cCrossRef Enzalutamide clinical trial 37. Yu Z, Chen D, Tøtdal B, Holmen A: Parametric study of carbon nanofiber growth by catalytic ethylene decomposition on hydrotalcite derived

catalysts. Mater Chem Phys 2005, 92:71–81. 10.1016/j.matchemphys.2004.12.032CrossRef 38. Melechko AV, Merkulov VI, McKnight TE, Guillorn M, Klein KL, Lowndes DH, Simpson ML: Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 2005, 97:041301–041301–041339.CrossRef 39. Plata DL, Meshot ER, Reddy CM, Hart AJ, Gschwend PM: Multiple alkynes react with ethylene to enhance carbon nanotube synthesis, suggesting a polymerization-like formation mechanism. ACS Nano 2010, 4:7185–7192. 10.1021/nn101842gCrossRef 40. Fenelonov V, Mel’gunov M, Parmon V: The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plans. KONA Powder and Particle Journal 2010, 28:189–207. 10.14356/kona.2010017CrossRef 41. Coville NJ, Mhlanga SD, Nxumalo EN, Shaikjee A: A review of shaped carbon

nanomaterials. S Afr J Sci 2011, 107:01–15.CrossRef 42. Gong QM, Li Z, Wang Y, Wu B, Zhang Z, Liang J: The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes. Mater Res Bull MG-132 clinical trial 2007, 42:474–481. 10.1016/j.materresbull.2006.06.023CrossRef 43. Shanahan PV, Xu L, Liang C, Waje M, Dai S, Yan Y: Graphitic mesoporous carbon as a durable fuel cell catalyst support. J Power Sources 2008, 185:423–427. 10.1016/j.jpowsour.2008.06.041CrossRef 44. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V: Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49:2581–2602. 10.1016/j.carbon.2011.03.028CrossRef 45. Teng F, Ting J-M, Sharma SP, Liao K-H: Growth of CNTs on Fe–Si catalyst prepared on Si and Al coated Si substrates. Nanotechnology 2008, 19:095607. 10.

Comments are closed.