To this end, Xac-GFP was cultured in static liquid XVM2 medium, a minimal medium that mimics the nutritional conditions found in plant tissues [21]. As previously described, biofilms are important for X. a. pv. citri virulence, and thus XVM2
medium was used to analyze bacterial biofilm formation in a plant-like environment. After one day of growth, some cells began to attach to the surface of the PVC plate wells, however, the majority of cells remained dispersed in the C646 culture medium (Figure 1). After three days of growth, cells initiated accumulation and formation of a biofilm (Figure 1), and after P505-15 mouse seven days, Xac-GFP cells formed a distinctly structured and dense biofilm consisting of large cell aggregations separated by a network of large channels (Figure 1) that ensured appropriate micronutrient and oxygen fluxes [22]. We also evaluated the population size of these biofilms and observed that at day seven of growth the biofilms reached a maximum population size of 1 x 109 cfu/ml. In a planktonic culture in XVM2 medium, a similar maximal population size is reached in early stationary NVP-BSK805 ic50 phase. Therefore, these two conditions of growth were used to identify differentially expressed proteins between the two lifestyles at their respective maximum population sizes and prior to the occurrence of noticeable
cell death. Figure 1 Confocal laser scanning microscopy analysis X. a . pv . citri in vitro biofilms. Representative photographs of laser scanning confocal analysis of GFP-expressing X. a. pv. citri cells cultured in static liquid XVM2 in 24-well PVC plates for one, three and seven days (upper panels). Serial images were taken at 0.5 μm distances (z-stack). White arrows point to cell aggregations and dotted white arrows point to network
channels. Scale bars: 30 μm. For a better visualization, the lower panels are images of biofilm channels and cell aggregates at 7 days. Two-dimensional gel electrophoretic analysis of protein expression and mass spectrometric identification MYO10 of the X. a. pv. citri biofilm proteome Since proteomics is a powerful method to obtain systems information on the physiology of bacterial cells, we aimed at analyzing and characterizing mature biofilms of X. a. pv. citri, and compare the proteome to that of planktonic X. a. pv. citri cells. Total proteins of these cultures were extracted and separated by two-dimensional gel electrophoresis (2-DE) (see “Methods” section). Protein extractions were performed from three independent biological samples, and two technical replicate gels for each cell type were compared. A total of 46 protein spots were differentially regulated (Figure 2), excised and processed for analysis by mass spectrometry.